- Forschung [+]
Eberhard Karls Universität Tübingen
Kombination zweier Bildgebungstechniken erlaubt neue Einblicke in die Funktion des Gehirns
Die Gehirnfunktionen von außen messen zu können, ohne in das Gehirn einzudringen, ist sowohl für medizinische Diagnosen als auch für die Forschung in Neurologie und Psychologie interessant. Bisher werden dafür hauptsächlich zwei bildgebende Verfahren eingesetzt: Mit der Positronen-Emissions-Tomografie, kurz PET, lassen sich Stoffwechselprozesse im Gehirn verfolgen, mit der Magnetresonanztomografie (MR) wird über den Sauerstoffverbrauch der Zellen die Aktivität der verschiedenen Hirnareale gemessen. Wissenschaftler vom Werner Siemens Imaging Center an der Universität Tübingen unter der Leitung von Professor Bernd J. Pichler haben in Zusammenarbeit mit der Abteilung für Radiologische Diagnostik des Universitätsklinikums Tübingen sowie dem Max-Planck-Institut für Intelligente Systeme in Tübingen nun beide Methoden erfolgreich kombiniert. Sie können funktionelle Prozesse im Gehirn besonders detailliert darstellen und in ihrem Ablauf genauer einordnen. Ihr Messgerät, ein PET/MR-System, wurde an der Universität Tübingen entwickelt. Die von Erstautor Dr. Hans Wehrl aus dem Forscherteam von Professor Bernd J. Pichler verfasste Studie wird aktuell in der Fachzeitschrift „Nature Medicine“ veröffentlicht.
Bei der bildgebenden PET wird die Verteilung einer zuvor eingenommenen schwach radioaktiven Substanz in Schnittbildern des Körpers sichtbar gemacht. Je nach Substanz lassen sich über die PET viele verschiedene biochemische und physiologische Funktionen mit hoher Nachweisempfindlichkeit abbilden. Die für Messungen im Gehirn angewandte MR ist die funktionelle Magnetresonanztomografie (fMRI). Die Aktivierung bestimmter Hirnareale wird indirekt über die Sauerstoffsättigung des umgebenden Bluts gemessen. Man macht sich dabei zunutze, dass sauerstoffarmes und sauerstoffgesättigtes Blut unterschiedliche magnetische Eigenschaften haben. Die Vermessung von funktionellen Hirnarealen wie zum Beispiel des motorischen Zentrums ist auch für die Planung von Operationen am Gehirn von Bedeutung.
„Bisher war es kaum möglich, PET- und fMRI-Messungen miteinander zu vergleichen, da beide Aufnahmen in unterschiedlichen Geräten durchgeführt werden mussten“, erklärt Dr. Hans Wehrl. Die Forscher haben erstmals aufgezeigt, dass beide Bildgebungsverfahren sich ergänzende Informationen liefern. Hierfür wurden in dem eigens entwickelten Gerät zeitgleich PET- und MR-Aufnahmen gemacht. Die Forscher konnten nachweisen, dass es Unterschiede zwischen dem mit PET erfassten Zuckerstoffwechsel und den mit fMRI gemessenen Sauerstoffsättigungsänderungen des Bluts im Gehirn gibt. Diese regionalen Unterschiede erlauben es, die Funktionsweise des Gehirns besser zu verstehen. Sie sind aber auch bei der Planung von operativen Eingriffen von Bedeutung. Darüber hinaus konnten funktionelle Verbindungen zwischen einzelnen Gehirnregionen im Ruhezustand mit fMRI und erstmals auch mit dynamischer PET dargestellt werden. Die Weiterentwicklung des Kombinationsverfahrens kann sowohl für die wissenschaftliche Grundlagenforschung als auch für die medizinische Diagnostik genutzt werden.
Die vorgestellten Studien erfolgten in enger Kooperation mit den Firmen Siemens und Bruker und wurden durch die Deutsche Forschungsgemeinschaft (DFG), die Wilhelm Schuler Stiftung und die Werner Siemens-Stiftung gefördert.
Originalpublikation:
Hans F Wehrl, Mosaddek Hossain, Konrad Lankes, Chih-Chieh Liu, Ilja Bezrukov, Petros Martirosian, Fritz Schick, Gerald Reischl & Bernd J Pichler: Simultaneous PET-MRI reveals brain function in activated and resting state on metabolic, hemodynamic and multiple temporal scales. Nature Medicine, Online-Vorabveröffentlichung, doi:10.1038/nm.3290