• Forschung [+]
  • von Thomas Heckmann

Ruprecht-Karls-Universität Heidelberg

Wie die Enden der Chromosomen die Zellalterung beeinflussen

Biochemie-Zentrum der Universität Heidelberg / ZMBH. © Foto: Universität Heidelberg - Kommunikation und Marketing
Biochemie-Zentrum der Universität Heidelberg / ZMBH. © Foto: Universität Heidelberg - Kommunikation und Marketing

Mit Untersuchungen zu den Prozessen, die sich an den Enden von Chromosomen abspielen, haben Heidelberger Wissenschaftler einen wichtigen Mechanismus aufgedeckt, der zu einem besseren Verständnis der Zellalterung führt.

Im Mittelpunkt steht dabei die Länge der Chromosomenenden, der sogenannten Telomere, die sich experimentell beeinflussen lässt. Die Arbeiten, die am Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) durchgeführt wurden, eröffnen neue Ansätze für die Entwicklung von Therapien bei Gewebeverlusten und Organversagen, die im Zusammenhang mit der Alterung von Zellen, der Seneszenz, stehen.

Mit Untersuchungen zu den Prozessen, die sich an den Enden von Chromosomen abspielen, haben Heidelberger Wissenschaftler einen wichtigen Mechanismus aufgedeckt, der zu einem besseren Verständnis der Zellalterung führt. Im Mittelpunkt steht dabei die Länge der Chromosomenenden, der sogenannten Telomere, die sich experimentell beeinflussen lässt. Die Arbeiten, die am Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) durchgeführt wurden, eröffnen neue Ansätze für die Entwicklung von Therapien bei Gewebeverlusten und Organversagen, die im Zusammenhang mit der Alterung von Zellen, der Seneszenz, stehen. Die vor Kurzem in der Zeitschrift „Nature Structural & Molecular Biology“ veröffentlichten Forschungsergebnisse könnten auch in der Krebsbehandlung von Bedeutung sein.

Jede Zelle enthält einen Chromosomensatz, in dem ein Großteil der Erbinformation in Form von DNA gespeichert ist. Diese Information muss geschützt werden, damit die ordnungsgemäße Funktion der Zelle erhalten bleibt. Dabei übernehmen die Enden der Chromosomen, die Telomere, eine wichtige Rolle und schützen die chromosomale DNA vor Abbau. „Man kann sich Telomere wie die Plastikkappen an Schnürsenkeln vorstellen. Ohne diese Kappen fransen die Enden aus, und schließlich kann der ganze Schnürsenkel seine Funktion nicht mehr erfüllen“, erklärt Dr. Brian Luke. Seine Forschergruppe am ZMBH beschäftigt sich in erster Linie mit der Frage, auf welche Weise Telomere der DNA Schutz bieten.

In der Wissenschaft ist bekannt, dass Telomere mit jeder Zellteilung kürzer werden und schließlich so weit verkürzt sind, dass sie die Chromosomen nicht mehr schützen können. Die ungeschützten Chromosomenenden senden Signale aus, die dafür sorgen, dass sich die Zelle nicht mehr teilt. Dieser Zustand wird als „Seneszenz“ bezeichnet. Mit fortschreitendem Alter gibt es immer mehr seneszente Zellen, die den Verlust von Gewebe und Organversagen begünstigen können. „Bei bestimmten Krankheiten haben die Patienten von Geburt an kurze Telomere und sind daher oft schon frühzeitig starken Gewebeverlusten und Funktionsstörungen von Organen ausgesetzt“, erläutert der Heidelberger Wissenschaftler.

Die Forschergruppe um Dr. Luke hat nun herausgefunden, dass das An- oder Abschalten der Transkription an den Telomeren erhebliche Auswirkungen auf deren Länge haben kann. Bei der Transkription handelt es sich um den Vorgang, bei dem Informationen der DNA in RNA-Moleküle umgeschrieben werden. Er konnte erst vor kurzem bei Telomeren nachgewiesen werden, aber die funktionelle Bedeutung dieser Entdeckung blieb ungeklärt. Die Molekularbiologen Bettina Balk und André Maicher konnten jetzt zeigen, dass die RNA selbst eine Schlüsselrolle bei der Regulierung der Telomerlänge spielt – und zwar besonders dann, wenn sie an die Telomer-DNA bindet und ein sogenanntes „RNA-DNA-Hybrid-Molekül“ bildet.

„Experimentell haben wir die Anzahl der RNA-DNA-Hybride an den Chromosomenenden beeinflusst. So können wir das Tempo der zellulären Seneszenz direkt erhöhen oder verringern, indem wir die Länge des Telomers verändern“, erläutert Bettina Balk. Nach den Worten von André Maicher könnte dies der erste Schritt hin zu Telomer-basierten Behandlungsmethoden bei Gewebeverlusten oder Organversagen sein. Im Falle von Krankheiten bleibt es zu überprüfen, ob die Veränderung der Transkriptionsraten von Telomeren tatsächlich den Gesundheitszustand verbessern kann. Von Bedeutung ist dieser Ansatz auch bei Krebszellen, die nicht altern und quasi unsterblich sind. „Die Regulierung der Länge von Telomeren über die Beinflussung der Transkription könnte daher auch in der Krebstherapie eine Anwendung finden“, betont Dr. Luke.

Die Nachwuchsforschergruppe von Dr. Luke ist Mitglied des Netzwerks AlternsfoRschung (NAR) an der Universität Heidelberg und wird finanziell von der Baden-Württemberg Stiftung unterstützt. Weitere Fördermittel werden von der Deutschen Forschungsgemeinschaft im Rahmen des Sonderforschungsbereichs „Zelluläre Qualitätskontrolle und Schadensbegrenzung“ (SFB 1036) der Ruperto Carola bereit gestellt.

Marietta Fuhrmann-Koch, Kommunikation und Marketing,Ruprecht-Karls-Universität Heidelberg
B. Balk, A. Maicher, M. Dees, J. Klermund, S. Luke-Glaser, K. Bender & B. Luke: Telomeric RNA-DNA hybrids affect telomere length dynamics and senescence; Nat. Struct. Mol. Biol. (8 September 2013), DOI: 10.1038/nsmb.2662
Dr. Brian Luke, Zentrum für Molekulare Biologie der Universität Heidelberg, Tel.: 06221 / 54-6897, eMail: b.luke@zmbh.uni-heidelberg.de
11.09.2013
06.03.2024, 15:44 | vth
Stichwörter:

Zurück