- KAM [+]
Klinikum der Universität München
Curcumin stimuliert Mikro-RNA und hemmt somit die Bildung von Metastasen
„Die Biomarker zeigen uns an, ob die Therapie erfolgreich ist“, sagt Privatdozentin Dr. Beatrice Bachmeier (Arbeitsgruppe Klinische Biochemie, Prof. Dr. Christian Sommerhoff) vom Institut für Laboratoriumsmedizin des Klinikums der Universität München. Sie hat jetzt entsprechende Biomarker für den Naturstoff Curcumin gefunden und patentieren lassen. Und im Zuge ihrer Arbeiten von einem Sponsor finanzielle Unterstützung für die kommenden fünf Jahre in Aussicht gestellt bekommen, um Curcumin für den Einsatz in der Therapie und Vorbeugung von Brust- und Prostatakrebs zu testen.
Schon seit 5000 Jahren wird der Stoff aus dem Curry-Gewürz (Gelbwurzel, lat: Curcuma longa) in der ayurvedischen Medizin Asiens eingesetzt, vorzugsweise gegen Entzündungen in den Gelenken beispielsweise oder im Darm. „Mit beachtlichen Erfolgen“, wie Bachmeier unterstreicht. Naturheilkundler nutzen das Mittel auch in der Tumorbehandlung. Nicht zu Unrecht. „Wir wissen heute, dass viele Krebsarten mit chronischen Entzündungen einhergehen, die das Tumorwachstum fördern.“ In mehreren Versuchen hat das Team um Bachmeier nachgewiesen, dass Curcumin die Bildung von Tochtergeschwulsten beim Brust- und Prostatakrebs bremsen kann.
Grundsätzlich reguliert eine Zelle ihr Wachstum und ihre Vermehrung über verschiedene Moleküle, die wiederum andere Moleküle und Aktivitäten von Genen steuern. Und zwar in einem haarfein austarierten Signalsystem. In Tumorzellen ist dieses System gestört: Manche Moleküle finden sich im Übermaß, andere dagegen sind ausgeschaltet. Ergebnis: bösartiges Tumorwachstum. Entsprechend sollen moderne Medikamente in den gestörten Prozess eingreifen. Curcumin blockiert in Brust- und Prostatatumorzellen ein Molekül namens NFkappaB. Dadurch wird, wie Bachmeiers Team herausfand, die Produktion der Entzündungsmoleküle CXCL1 und CXCL2 gehemmt, was zu einer verminderten Bildung von Tochtergeschwulsten führt. Bei Mäusen, beobachtete das Forscherteam, ist die Metastasierung in die Lungen deutlich gehemmt.
Als Biomarker taugen NFkappa B und die CXCL-Moleküle aber nicht, weil sie zu unspezifisch sind. Andere Moleküle, die sogenannten Mikro-RNAs, könnten sich besser eignen, mutmaßte Bachmeier. Sie ging davon aus, dass Curcumin auf bestimmte Mikro-RNAs einwirkt. In einer Serie von Experimenten mit Curcumin-behandelten und unbehandelten Tumorzellen zeigte sich: Curcumin verändert spezifisch die Synthese einiger Mikro-RNAs, darunter „miR181b“, das wiederum die Produktion von CXCL-1 und -2 reguliert. Die Konzentration von bestimmten Mikro-RNAs beziehungsweise deren Änderung – etwa im Blut von Patienten – könnte demnach verraten, ob Curcumin seine gewünschte Wirkung entfaltet. „Deshalb ist miR181b ein potenzieller Biomarker, den es nun zu validieren gilt“, erklärt Bachmeier.
In Zukunft will sie weitere Biomarker suchen und testen, inwieweit Curcumin sich zusammen mit gängigen Krebsmedikamenten einsetzen lässt. Um zu sehen, „ob man die Dosis jener Substanzen verringern kann und somit auch deren Nebenwirkungen – bei gleicher Effektivität.“ Curcumin alleine könnte aber schon jetzt für eine vorbeugende Behandlung eingesetzt werden. Als Zielgruppe kämen Männer mit gutartiger Prostatavergrößerung in Frage, die später zu Prostatakrebs entarten kann. Auch Frauen mit familiär hohem Brustkrebsrisiko könnten Curcumin präventiv einnehmen. Mittelfristig plant die Chemikerin eine Kooperation mit dem Kompetenzzentrum für Komplementärmedizin und Naturheilkunde der TU München.
Klinikum der Universität München
Im Klinikum der Universität München (LMU) werden jährlich an den Standorten Großhadern und Innenstadt rund 500.000 Patienten ambulant, teilstationär und stationär behandelt worden. Den 45 Fachkliniken, Instituten und Abteilungen sowie den 45 interdisziplinären Zentren etwas mehr als 2.000 Betten zur Verfügung. Von insgesamt über 10.000 Be-schäftigten sind rund 1.800 Mediziner und 3.400 Pflegekräfte. Das Klinikum der Universität München ist seit 2006 Anstalt des öffentlichen Rechts.
Gemeinsam mit der Medizinischen Fakultät der Ludwig-Maximilians-Universität ist das Klinikum der Universität München an fünf Sonderforschungsbereichen der DFG (SFB 455, 571, 596, 684, 914), an drei Transregios (TR 05, 127, 128), zwei Forschergruppen (FOR 535, 809) sowie an zwei Graduiertenkollegs (GK 1091, 1202) beteiligt. Hinzu kommen die vier Exzellenzcluster „Center for Integrated Protein Sciences“ (CIPSM), „Munich Center of Advanced Photonics“ (MAP), „Nanosystems Initiative Munich“ (NIM) und „Munich Cluster for Systems Neurology“ (SyNergy) sowie die Graduiertenschulen „Graduate School of Sys-temic Neurosciences“ (GSN-LMU) und „Graduate School of Quantitative Biosciences Mu-nich (QBM)“.