• Forschung [+]
  • Thomas Schönemann

Universität Wien

Neues Analyseverfahren könnte Brustkrebstherapie revolutionieren

Bioanalytiker Christopher Gerner mit seinem Team (v.l.n.r.: Andrea Bileck, Astrid Slany, Dominique Kreutz) im Labor des Instituts für Analytische Chemie. © Foto: Universität Wien
Bioanalytiker Christopher Gerner mit seinem Team (v.l.n.r.: Andrea Bileck, Astrid Slany, Dominique Kreutz) im Labor des Instituts für Analytische Chemie. © Foto: Universität Wien

Bindegewebszellen – sogenannte Stromazellen – können das Tumorwachstum entscheidend beeinflussen. Dies ist seit Längerem bekannt. Neu ist ein Auswerteverfahren, das der Bioanalytiker Christopher Gerner und ein interdisziplinäres Team von der Universität Wien und der Medizinischen Universität Wien entwickelt haben. Mit Hilfe der modernen Massenspektrometer der Universität Wien gelang es erstmals, in menschlichen Brustkrebs-Gewebsproben tumorfördernde Zellaktivitäten analytisch nachzuweisen.

Aktuell ist dazu eine Publikation im renommierten Fachmagazin "Journal of Proteome Research" erschienen.

Bekannt ist, dass Bindegewebe oder auch Stroma zu Entstehung und Wachstum von Tumoren beitragen kann. Ungeklärt ist jedoch, ob krankhafte Veränderungen des "Stromas" die Bildung von Tumoren begünstigen oder ob erst vorhandene Tumorzellen das Stroma zu ihrem Überlebensvorteil funktionell verändern. "Uns gelang es erstmals, für diesen Prozess entscheidende Moleküle als solche zu erkennen und aus klinischen Proben direkt nachzuweisen", sagt Christopher Gerner, Vorstand des Instituts für Analytische Chemie der Universität Wien, der zusammen mit Georg Pfeiler von der Universitätsklinik für Frauenheilkunde der Medizinischen Universität Wien und einem interdisziplinären Team erfolgreich ein neues Analyseverfahren entwickelt hat.

Unerwünschte Promotion von Krebswachstum durch Bindegewebszellen nachgewiesen

Gewebe sind aus unterschiedlichen Zelltypen aufgebaut, welche jeweils spezifische Aufgaben erfüllen. Brustgewebe ist im Wesentlichen aus Epithelzellen und Fibroblasten aufgebaut. Im Falle von Brustkrebs können Epithelzellen zu Krebszellen entarteten, und Fibroblasten (Bindegewebszellen) können – wie oben angesprochen – in kritischer Weise funktionell verändert sein. Eine typische Aktivität von krebsassoziierten Fibroblasten (cancer-associated fibroblasts, CAFs) gleicht dem Bemühen dieser Zellen, eine Wunde heilen zu wollen. Die dabei abgesonderten Wachstums- und Überlebensfaktoren sind bereits in geringsten Konzentrationen hochaktiv und helfen nicht nur der Wundheilung, sondern werden eben im Falle von Krebs für unerwünschtes Krebswachstum missbraucht. Die Bedeutung dieses Prozesses ist erst seit wenigen Jahren voll akzeptiert, jetzt konnte in dieser Studie auch erstmals ein relevantes In vitro Modellsystem vorgestellt werden.

Links: unbehandelte Fibroblasten. Bildmitte: Nach einer entzündlichen Aktivierung sieht man kaum Unterschiede. Rechts: Die Aktivierung der Wundheilungsaktivität führt zu einer erhöhten Zelldichte.
Links: unbehandelte Fibroblasten. Bildmitte: Nach einer entzündlichen Aktivierung sieht man kaum Unterschiede. Rechts: Die Aktivierung der Wundheilungsaktivität führt zu einer erhöhten Zelldichte. © Foto: Universität Wien

Durch Massenspektrometrie innovatives Auswerteverfahren von Brustgewebszellen

Die analytische Herausforderung war nun, aus Nadelbiopsien und den daraus gewonnenen Gewebshomogenaten, also einem Gemisch verschiedenster Zelltypen und unzähliger Blutbestandteile, möglichst viele krankheitsbeeinflussende Proteine zu identifizieren. Mittels moderner massenspektrometrischer Analysen konnten zunächst in den Gewebsproben von Brustkrebspatientinnen viele tausend Proteine erfolgreich erkannt werden. In der Folge gelang es erstmals, die Aktivitäten der Fibroblasten direkt nachzuweisen – mit dem Ergebnis, dass wie im In-vitro-Modell auch die menschlichen Zellen im Gewebe eine deutliche Wundheilungs-Signatur und somit krebsfördernde Aktivitäten aufzeigen. "Möglich wurden diese Experimente durch die Ausstattung meiner neuen Professur für Bioanalytik", so Christopher Gerner über die Topgeräte des Massenspektrometriezentrums der Universität Wien.

Neue Ansätze in der Brustkrebstherapie

Diese Erkenntnis ist in mehrfacher Hinsicht von Bedeutung. Aufgrund einer Nadelbiopsie kann nun der Status quo der entnommenen Zellen erhoben werden. "Es kann damit prinzipiell bei jeder einzelnen Patientin festgestellt werden, wie stark bei ihr die Wundheilungsaktivität ausgeprägt ist. Das ist eine entscheidende Voraussetzung, um eine gezielte Einflussnahme planen zu können. Für die klinische Routine ist das aber noch Zukunftsmusik", so Georg Pfeiler von der Medizinischen Universität Wien.

"Wir arbeiten bereits daran, einen derartigen Status auch aus Serumproben erheben zu können", ergänzt Christopher Gerner vom Institut für Analytische Chemie der Universität Wien.

Darüber hinaus kann nun das etablierte Zellmodell für Krebs-assoziierte Fibroblasten dazu verwendet werden, Medikamente zu testen, die diese unerwünschten Zell-Aktivitäten gezielt hemmen sollen. Eine derartige (Zusatz-)Therapie könnte eine unschätzbare Verbesserung der bisher eingesetzten klinischen Standard-Therapien darstellen.

Derzeit arbeiten mehrere DoktorandInnen an der Universität Wien und der Medizinischen Universität Wien an der Umsetzung dieses Forschungsvorhabens. Es handelt sich dabei um ein typisches Cross-Over-Projekt, an dem chemische AnalytikerInnen, MedizinerInnen und PharmakologInnen mitarbeiten.

Publikation in "Journal of Proteome Research" (Special Issue: Proteomics of Human Diseases: Pathogenesis, Diagnosis, Prognosis, and Treatment): Proteome Profiling of Breast Cancer Biopsies Reveals a Wound Healing Signature of Cancer-Associated Fibroblasts. Michael Groessl, Astrid Slany, Andrea Bileck, Kerstin Gloessmann, Dominique Kreutz, Walter Jaeger, Georg Pfeiler, Christopher Gerner. September 2014. DOI: 10.1021/pr500727h. http://pubs.acs.org/doi/abs/10.1021/pr500727h

Wissenschaftliche Kontakte
Univ.-Prof. Dr. Christopher Gerner
Institut für Analytische Chemie
Universität Wien
1090 Wien, Währinger Straße 38
T +43-1-4277-523 02
christopher.gerner@univie.ac.at

Dr. Astrid Slany
Institut für Analytische Chemie
Universität Wien
1090 Wien, Währinger Straße 38
T +43-1-4277-523 72
astrid.slany@univie.ac.at

Rückfragehinweise
Mag. Veronika Schallhart
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at

Mag. Johannes Angerer
Kommunikation und Öffentlichkeitsarbeit
Medizinische Universität Wien
1090 Wien, Spitalgasse 23
T +43-1-40160-11501
M +43-664-800-16 11 501
johannes.angerer@meduniwien.ac.at

Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 15 Fakultäten und vier Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.900 WissenschafterInnen. Die Universität Wien ist damit auch die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 92.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. 1365 gegründet, feiert die Alma Mater Rudolphina Vindobonensis im Jahr 2015 ihr 650-jähriges Gründungsjubiläum. http://www.univie.ac.at

Die Medizinische Universität Wien (kurz: MedUni Wien) ist eine der traditionsreichsten medizinischen Ausbildungs- und Forschungsstätten Europas. Mit fast 7.500 Studierenden und 4.200 MitarbeiterInnen ist sie heute die größte medizinische Ausbildungsstätte im deutschsprachigen Raum. Mit ihren 29 Universitätskliniken, 12 medizintheoretischen Zentren und zahlreichen hochspezialisierten Laboratorien zählt sie auch zu den bedeutendsten Spitzenforschungsinstitutionen Europas im biomedizinischen Bereich. Für die Forschung stehen über 48.000m² Forschungsfläche zur Verfügung. http://www.meduniwien.ac.at

Stephan Brodicky, Öffentlichkeitsarbeit, Universität Wien
Michael Groessl et al.: Proteome Profiling of Breast Cancer Biopsies Reveals a Wound Healing Signature of Cancer-Associated Fibroblasts.
Stephan Brodicky, Tel.: +43-650-772-0405, eMail: stephan.brodicky@univie.ac.at
21.10.2014
22.06.2017, 11:21 | tsc
Zurück